Time Value of Money - Six Functions of a Dollar Appraisal Training: Self-Paced Online Learning Session

Lesson 3: Present Worth of \$1

Problem 1

Calculate the present value (*PV*) of each future value (*FV*) listed below using the present worth of \$1 (*PW*\$1) factors in AH 505:

	FV	n (years)	Annual Rate (%)	PV = FV × PW\$1
1	\$1,000	5	3	
2	\$100,000	5	4	
3	\$1,000,000	20	5	
4	\$20	5	4	
5	\$1,000,000	10	10	

Solution:

To solve, calculate the present value of each future value amount by multiplying the amount by the present worth of \$1 factor found in the AH 505 annual compound interest tables for the given interest rate and term.

- 1. $PV = FV \times PW$ \$1 $PV = \$1,000 \times \textbf{0.862609}$ (AH 505, page 21, column 4) PV = \$862.61
- 2. $PV = FV \times PW$ \$1

 $PV = $100,000 \times 0.821927$ (AH 505, page 25, column 4)

PV = \$82,192.70

3. $PV = FV \times PW$ \$1

 $PV = $1,000,000 \times 0.376889$ (AH 505, page 29, column 4)

PV = \$376,889.00

4. $PV = FV \times PW$ \$1

 $PV = 20×0.821927 (AH 505, page 25, column 4)

PV = \$16.44

5. $PV = FV \times PW$ \$1

 $PV = $1,000,000 \times 0.385543$ (AH 505, page 49, column 4)

PV = \$385,543.00

Problem 2

Assume that you would like to have \$500,000 saved by the time you reach 50 and that you are 30 years old today. If you can earn an annual interest rate of 8%, how much should you invest today to reach your goal?

Solution:

To solve, calculate the present value of the amount you want to have at the end of the term using the present worth of \$1 factors in the AH 505 annual compound interest tables with an annual rate of 8%. The term is 20 years (age 50 less your current age of 30).

```
PV = FV x PW$1 (8%, 20 yrs, annual)
PV = $500,000 x 0.214548 (AH 505, page 41, column 4)
PV = $107,274.00
```

Problem 3

You would like to be able to withdraw \$10,000 at the end of 5 years, and another \$10,000 at the end of 10 years. If you can earn an annual interest rate of 5% on a deposit, how much should you deposit today?

Solution:

To solve, calculate the present values of the two planned withdrawals using the present worth of \$1 factors in AH 505 for each of the two terms at 5% annual compounding; and then add the two results.

PV First Withdrawal

```
PV = FV x PW$1 (5%, 5 yrs, annual)
PV = $10,000 x 0.783526 (AH 505, page 29, column 4)
PV = $7,835.26
```

PV Second Withdrawal

```
PV = FV x PW$1 (5%, 10 yrs, annual)
PV = $10,000 x 0.613913 (AH 505, page 29, column 4)
PV = $6,139.13
```

You would need to deposit \$7,835.26 + \$6,139.13 = \$13,974.39

Problem 4

Mr. Smith wants to borrow money from you to finance his new business. He promises to repay you in two installments: a payment of \$5,000 two years from today, and a second payment of \$10,000 four years from today. If the annual interest rate is 10%, how much would you lend Mr. Smith today?

Solution:

To solve, calculate the present value of each installment using the Present Worth of \$1 factors in the AH 505 annual compound interest tables for each term (2 years and 4 years) at an annual interest rate of 10% and add them together.

First Installment

PV = FV x PW\$1 (10%, 2 yrs, annual)
PV = \$5,000 x 0.826446 (AH 505, page 49, column 4)
PV = \$4,132.23

Second Installment

PV = FV x PW\$1 (10%, 4 yrs, annual)
PV = \$10,000 x 0.683013 (AH 505, page 49, column 4)
PV = \$6,830.13

Total present value = \$4,132.23 + \$6,830.13 = \$10,962.36

Problem 5

Two investments A and B have the following annual cash flows (*CF*). Which investment is preferred, given an annual interest rate of 5%?

(The initial cash flows are negative, indicating outflows, and the subsequent cash flows are positive, indicating inflows. All inflows occur at the end of the year.)

Year	Investment A	Investment B
0 (now)	- \$5,000	- \$5,000
1	+ \$500	0
2	+ \$2,500	0
3	+ \$3,250	\$6,000

Solution:

To solve, calculate the present value of the cash flow at the end of each year using the present worth of \$1 factors in the AH 505 annual compound interest tables with an annual rate of 5% and then add all of the present values. Compare the sum of each investment to determine which has the higher present value.

		Investment A		Investment B	
Year	PW\$1 @5%	CF	PV	CF	PV
0 (now)	1.000000	- \$5,000	- \$5,000	- \$5,000	- \$5,000
1	0.952381	+ \$500	\$476	0	0
2	0.907029	+ \$2,500	\$2,268	0	0
3	0.863838	+ \$3,250	\$2,807	\$6,000	\$5,183
Total PV			\$551		\$183

The present value of the cash flows from Investment A, \$551, is higher than those from Investment B, \$183, so Investment A is preferred.

Problem 6

Assuming all cash flows (CF) occur at the end of each year, determine the present values of each of the following two series of cash flows:

Series	CF ₁ (End Yr 1)	CF ₂ (End Yr 2)	CF ₃ (End Yr 3)	Annual Rate	PV
1	\$5,000	\$5,000	\$3,000	5%	
2	\$3,000	0	\$3,000	4%	

Solution:

To solve, calculate the present value of the cash flow at the end of each year using the present worth of \$1 factors in the AH 505 annual compound interest tables with an annual rate of 5% for series 1 cash flows and 4% for series 2; and then add the present value of each cash flow in the series. The sum is the present value of the series.

PV of Series 1 (AH 505, page 29, column 4)

Year 1	\$5,000	×	0.952381 (PW\$1, 5%, 1 year, annual)	=	\$4,761.90
Year 2	\$5,000	×	0.907029 (PW\$1, 5%, 2 years, annual)	II	\$4,535.15
Year 3	\$3,000	×	0.863838 (PW\$1, 5%, 3 years, annual)	II	\$2,591.51
			Total PV	=	\$11,888.56

PV of Series 2 (AH 505, page 25, column 4)

Year 1	\$3,000	×	0.961538 (PW\$1, 4%, 1 year, annual)	=	\$2,884.61
Year 2	0	×	0.924556 (PW\$1, 4%, 2 years, annual)	=	0.00
Year 3	\$3,000	×	0.888996 (PW\$1, 4%, 3 years, annual)	=	\$2,666.99
			Total PV	=	\$5,551.60